

ska-sdp-plasmastman

	Installation
	Dependencies

	Compiling

	Testing

	Python quirks
	python-casacore

	pyarrow

	Usage
	Configuration

	Reading

	Writing

	Example

	Changelog
	1.3

	1.2

	1.1

	1.0.1

	1.0

	API
	Casacore classes

	Plasma access

	Data reading

	Misc

Installation

These instructions are sufficient to build and install PlasmaStMan,
making it readily available for usage by third-party applications.

While these instructions are enough to get started,
attention needs to be paid
when planning to use this storage manager
from a python environment.
For details see Python quirks.

Dependencies

This project depends on:

	Any C++14 compiler

	casacore > 3.3.0 (with 64-bit table support)

	arrow >= 1.0.0-SNAPSHOT with plasma support

Compiling

This is a cmake-based project,
so it can be built as any standard cmake project:

$ git clone https://gitlab.com/ska-telescope/ska-sdp-plasmastman
$ cd plasma-storage-manager
$ cmake . -B build
cmake --build build

Some of the most relevant cmake variables
(passed on the first cmake invocation via -Dvariable=value)
used for compiling are:

	CASACORE_ROOT_DIR: Root of arbitrary casacore installations
in case one is used

	Arrow_DIR: directory containing the cmake configuration
exported by Apache Arrow (usually under lib/cmake/arrow
in the arrow installation area).

	Plasma_DIR: directory containing the cmake configuration
exported by Apache Plasma (usually under lib/cmake/arrow
in the arrow installation area).

	CMAKE_CXX_COMPILER: The C++ compiler to use.

	CMAKE_CXX_FLAGS: Extra C++ compilation flags.

	CMAKE_BUILD_TYPE: The type of build to produce,
one of Debug, Release and RelWithDebInfo.

	BUILD_TESTING: Whether to build unit tests or not,
defaults to ON.

Testing

A set of unit tests is included and built by default.
To execute them do:

$ cmake --build build --target test

The unit tests require the plasma-store-server executable
(part of a standard C++ Arrow Plasma installation)
to be visible in the path.

If you want further control on ctest’s command line flags
you can do:

$ cmake --build build --target test -- ARGS="<ctest command line flags>"

or alternatively:

$ cd build/
$ ctest <ctest command line flags>

Python quirks

When using PlasmaStMan from python,
special attention needs to be paid to how
the python-casacore and pyarrow python packages,
if needed by your python code, are installed
to avoid some otherwise difficult to debug errors.

python-casacore

TL;DR:

	Don’t install the pre-built binary wheels from PyPI.

	If you can,
use the kernsuite [https://kernsuite.info] repositories
to install the casacore libraries
and python-casacore python package
from pre-built apt packages.

	If installing from kernsuite is not an option,
then ensure python-casacore is built
against the same casacore installation
PlasmaStMan was built against.

Starting from version 3.4.0, the python-casacore package
offers pre-built binary wheels
for some major OS and python version combinations.
These binary wheels come bundled
with a copy of the underlying casacore libraries
(libcasa_casa.so, libcasa_tables.so, etc)
and their dependencies.
Each of these bundled libraries actually have
a specific SONAME s and matching filesname
(e.g. libcasa_tables-734048a7.so.6),
thus avoiding interfering
with any system-wide installation.

On the other hand,
the plug-in mechanism used to register
third-party storage managers with casacore
involves first loading the storage manager shared library into memory,
then invoking a registration function in the library
that registers itself into a static casacore-owned registration map,
and finally checking that the registration was successful.
This usually looks like this:

+-------------+ 1. dlopen() +----------------+
| casacore.so | -------------------> | plasmastman.so |
+-------------+ +----------------+
 ^ | ^ | ^ |
			2. register_plasmastman()	
		\-------------------------------/		
		3. DataMan::registerCtor()		
	\-------------------------------------/			
 \--/ 4. check_registration() // all good :)

However when using the binary wheels from PyPI,
and because of the difference in SONAME
between the bundled libraries
and the libraries used to compile the storage manager,
two different copies of casacore.so are loaded into memory,
and the interaction looks like this:

+----------------------+ 1. dlopen() +----------------+ 1.1 dlopen() +-------------+
| casacore-734048a7.so | ----------------> | plasmastman.so | -------------> | casacore.so |
+----------------------+ +----------------+ +-------------+
 ^ | | ^ | ^
 | | | 2. register_plasmastman() | | |
 | | \---------------------------/ | |
 | | | |
 | | | 3. DataMan::registerCtor() |
 | | \---------------------------------/
 | |
 \--/ 4. check_registration() // fails, registration cannot be found :(

In particular, the error message will look something like:

RuntimeError: Table DataManager error: Data Manager class PlasmaData is not registered

This situation is specific to the binary wheels
distributed via PyPI.
To avoid this issue one must ensure
that the python-casacore package
uses the same libraries
the storage manager was compiled against.
This could be done either by installing python-casacore
from source and pointing it
to an existing casacore installation
(which itself might be installed from source or not),
or by using pre-compiled packages
that don’t incur into this duplication of libraries,
like the apt packages provided by the Kernsuite project.

pyarrow

TL;DR:

	Pre-built binary wheels from PyPI
are incompatible with pre-built Arrow apt packages
provided by Apache.

	You can install a different version of pyarrow
alongside the pre-built Arrow apt packages,
but this might break in the future.

	You can install pyarrow from sources,
building them against the same Arrow/Plasma installation
PlasmaStMan was built against.

Apache Arrow makes available binary wheels in PyPI
for users to install the pyarrow python package
without needing a compiler or any other external libraries.
Like in the case of python-casacore,
these binary wheels are bundled
with their own copy of the Arrow shared libraries
(libarrow.so, libplasma.so and so on).
For a given version of Arrow,
these libraries share the same SONAME
with those installed via the Arrow apt repositories.
However, the PyPI pyarroww binary wheels
are compiled using a version of gcc
prior to the introduction
that didn’t offer
a dual ABI [https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html] mechanism
(read the link for a more detailed explanation).
The effect this has is that
the arrow libraries generated by newer versions of gcc
define differently named symbols
than those generated by older versions of gcc,
and therefore they cannot be mixed freely
(e.g., linked or dynamically loaded).
This problem has been reported [https://issues.apache.org/jira/browse/ARROW-12585],
but other than acknowledging the issue
and providing some suggestions on how to proceed,
the final response was
that this use case is not officially supported
by the Arrow published artifacts.

Because of this situation,
problems occur if the python process
loads the storage manager,
which has been compiled against
the apt-installed Arrow libraries,
after importing the PyPI-installed pyarrow.
In such cases the following situation occurs:

+-------------+
| | 1.1 no dlopen(), library with same SONAME already loaded
| | 1.2 check_required_symbols() // fails, symbol not found
| libarrow.so | <--------------------------\
| | |
+-------------+ 1. dlopen() +----------------+
| casacore.so | -------------------> | plasmastman.so |
+-------------+ +----------------+

In particular, the error message will look something like:

RuntimeError: Shared library plasmastman not found in CASACORE_LDPATH or (DY)LD_LIBRARY_PATH
libcasa_plasmastman.so.4: cannot open shared object file: No such file or directory
libcasa_plasmastman.so: cannot open shared object file: No such file or directory
libplasmastman.so.4: cannot open shared object file: No such file or directory
/usr/local/lib/libplasmastman.so: undefined symbol: _ZN5arrow5fieldENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESt10shared_ptrINS_8DataTypeEEbS6_IKNS_16KeyValueMetadataEE

Note that if pyarrow has not yet been imported
at the time the storage manager library is loaded
then no error occurs:

+-------------+ 1. dlopen() +----------------+ 1.1 dlopen() +-------------+
| casacore.so | ------------> | plasmastman.so | -------------> | libarrow.so |
+-------------+ +----------------+ +-------------+
 | ^
 | |
 \---------------------------------/
 1.2. check_required_symbols() // fine

The situation above is a bit brittle
as it depends on pyarrow
not being loaded at the time.
Moreover, loading it later
might also lead to the same missing symbol error.

A possibility, somewhat fragile,
is to install a version of pyarrow from PyPI
different to that installed via apt
so the SONAME of both libraries don’t collide.
That way, plasmastman.so
is forced into loading a different copy of the arrow library
into memory.
This results in the following:

+---------------+
| |
| |
| libarrow.3.so |
| |
+---------------+ 1. dlopen() +----------------+ 1.1 dlopen() +---------------+
| casacore.so | ------------> | plasmastman.so | -------------> | libarrow.4.so |
+---------------+ +----------------+ +---------------+
 | ^
 | |
 \---------------------------------/
 2. check_required_symbols() // all good :)

This obviously results
in two copies of different versions
of the Arrow library
loaded into memory.
Although we haven’t noticed any side-effects,
this might not always be the case.

The ultimate solution is of course
to avoid the problem with bundled libraries altogether
and install pyarrow from source,
compiling against the same installation of Arrow/Plasma
the PlasmaStMan was compiled against.
This results on a clean environment,
but has a higher setup cost:

+-------------+
| | 1.1 no dlopen(), library with same SONAME already loaded
| | 1.2 check_required_symbols() // all good :)
| libarrow.so | <--------------------------\
| | |
+-------------+ 1. dlopen() +----------------+
| casacore.so | -------------------> | plasmastman.so |
+-------------+ +----------------+

Usage

PlasmaStMan maps Apache Arrow Tensors and Tables
(i.e., their Object IDs in the Plasma store)
to individual columns within a casacore Table.

Arrow Tensors map directly to casacore Columns one to one.
The mapping then consists on a pair of strings
indicating the Object ID of the Tensor in the Plasma store
and the name of the casacore Table column it provides data to.
Checks are in place to ensure that a Tensor’s shape and type
match those of the corresponding column of the casacore Table.
All casacore data types are supported by this mapping
with the exception of Strings.

Arrow Tables on the other hand contain one or more Fields,
which individually map to casacore Columns.
The mapping then consists on a pair of strings
indicating the ObjectID of the Table in the Plasma store
and the name of the Field that should be considered,
which should match the name of the casacore Table column
it provides data to.
Like in the case of Tensors,
a Field’s shape (length) and type are checked
against those of the corresponding column of the casacore Table.
Columns in an Arrow Table have only a single dimension,
so they are currently only supported as scalar columns.
Additionally, Complex values are not supported natively by Arrow Tables,
and therefore Complex and DComplex values
are supported as Arrow Struct objects with r and i fields.

Configuration

PlasmaStMan always needs to connect to a Plasma store.
This happens through a Unix socket in the filesystem.
The location of this socket defaults to /tmp/plasma,
but its value can be overriden
by setting the PLASMA_SOCKET environment variable.

Either when reading or writing,
certain aspects of PlasmaStMan
can be configured at runtime via Storage manager properties
(arbitrary key-value pairs).
PlasmaStMan supports the following properties:

	PLASMACONNECTRETRIES: the number of times
the Plasma client should try to connect to the Plasma store
before giving up.
Defaults to 50.

	PLASMAGETTIMEOUT: the timeout in milliseconds to use
when getting an object from the Plasma store
that is not immediately available.
Defaults to 10000.

Reading

When reading data from a Table
backed by a PlasmaStMan storage manager
users need to ensured that the libplasmastman shared library
is visible in the dynamic linker’s path
(e.g., adding the directory containing the library
to the LD_LIBRARY_PATH environment variable in Linux).

Other than this,
existing casacore-based applications
do not require any modification or recompilation.

Writing

Note

At the moment PlasmaStMan does not support writing data to plasma.

Writing is a trickier business.

Even though the data itself cannot be written through PlasmaStMan,
what can currently be done is creating a casacore table
that points to existing data in Plasma.
To achieve this one must inform the storage manager
about the mapping between Object IDs and columns.
This can be done in two different ways:

	If writing a program in C++,
one can use the PlasmaStMan class
to create the storage manager object
and bind it to tables.
The main constructor of this class accepts two std::map objects
to provide the mapping from Object ID to column name
for Tensors and Tables.

	Storage managers allow specifications
to be given at creation time.
This includes the properties specified above,
along with the following additional keys:

	PLASMASOCKET: the Unix socket used to connect to Plasma,
override the PLASMA_SOCKET environment variable.

	TENSOROBJECTIDS: a casacore Record object (i.e., a mapping)
where keys are Tensor Object IDs and values are column names.

	TABLEOBJECTIDS: a casacore Record object (i.e., a mapping)
where keys are Table Object IDs and values are column names.

Because this is a generic mechanism,
these specifications can be given through different interfaces.
For example, the TaQL language
supports [https://casacore.github.io/casacore-notes/199.html#x1-960008]
the creation of tables with a given Data Manager specification
(see section 8.2, Data manager specification).
The python-casacore python bindings
also allow the creation of tables [https://github.com/casacore/python-casacore/blob/05fc49d40165db01795e458d9729b24c8a141b83/casacore/tables/table.py#L315]
with specific Data Manager inforation (see dminfo argument).

Example

Note

This example needs pyarrow installed.

Included in the ska-sdp-plasmastman repository
is a python-based script that demonstrates
how to create a casacore Table pointing to Plasma-stored Tensors and Tables.
This can be used to test PlasmaStMan
from external programs:

Start a plasma store and store tensor and table data with arbitrary values
and create a table pointing to this new data (using taql).
Use -h to see a bit more of information on how to use it
$> python scripts/plasma_writer.py -o <table_name> -t <tensor1> -t <tensor2> -T <table1> ... &

Make the new storage manager visible to third-party apps
$> export LD_LIBRARY_PATH=your-build-directory/src/ska/plasma

Read the table metadata with casacore's showtableinfo
$> showtableinfo in=<table_name>

Read the table data back with casacore's taql
$> taql 'select * FROM <table_name>'

Changelog

	Migrated to use new cpp-build-base image and new $SKA_CPP_DOCKER_BUILDER_IMAGE variable.

1.3

	Added support for runtime properties
on the plasma storage manager.
Two properties are supported,
PLASMACONNECTRETRIES and PLASMAGETTIMEOUT,
making it possible to configure plasma-related aspects
of the storage manager at runtime.

	Added validation for user-provided Plasma Object IDs.

1.2

	Added support for Arrow Table mapping.
Individual Fields/Columns from an Arrow Table
can be mapped to the equally named casacore Table.
The mapping can be given
via the new TABLEOBJECTIDS Data Manager specification property.

	Changed OBJECTIDS Data Manager specification property name
to TENSOROBJECTIDS
to explicitly state what type of objects do they refer to.

	Added public C++ API documentation where missing.

1.1

	Added support for generic configuration
of the plasma storage manager
via Data Manager Specification (casacore Record) objects.
This makes it possible to create casacore Tables
with correctly configured plasma storage managers
without executables built for that specific purpose.
Most unit tests indeed
now create Tables using taql,
which supports this generic configuration mechanism.

1.0.1

	Removed memcheck tests from GitLab CI pipeline.

1.0

	First version of the plasma storage manager.

	A single column is backed up by a single Tensor
stored on a single Plasma store;
multiple columns require multiple Tensors
stored on a single Plasma store.

	Read-only operations are supported
for both scalar and array columns.

	Shape and type are checked
to ensure a Tensor can be used for a given column.

	Zero-copy is supported for operations
where this can be accomplished, namely:
full-column reads (array and scalar columns),
single, continuous row range reads (array and scalar columns), and
single cell reads (array columns).

	Existing programs can use this storage manager without modifications,
as demonstrated by tests with taql and showtableinfo.

	Table creation is a manual process.
A table_writer utility is included to help with this.

API

Casacore classes

ska::plasma::PlasmaStMan
and ska::plasma::PlasmaStManColumn
are the two main classes
implementing the Storage Manager API
as mandated by casacore.

	
class PlasmaStMan : public DataManager

	The Plasma-based storage manager

This is implemented using a pimpl idiom to hide the particulars of the implementation and hide it from users.

Public Functions

	
PlasmaStMan(std::string plasma_socket = "", const std::map<std::string, ObjectID> &tensor_object_ids = {}, const std::map<std::string, ObjectID> &table_object_ids = {})

	Creates a new instance of the Plasma Storage Manager connected to the given socket, and mapping columns to Arrow Tensors and Tables as indicated in the given mappings.

	Parameters

	
	plasma_socket – The UNIX socket where the Plasma store listens for connections. If not given, or empty, it defaults to /tmp/plasma, unless the PLASMA_SOCKET environment variable is set, in which case its value takes precedence.

	tensor_object_ids – A mapping from column names to Object IDs in the Plasma store where Arrow Tensors with the data for the respective column can be found.

	table_object_ids – A mapping from column names to Object IDs in the Plasma store where Arrow Tables with the data for the respective column can be found (the name of the column being mapped must be the same as the column name in the Arrow Table).

	
~PlasmaStMan()

	Destructor declaration because of the pimpl idiom, otherwise its implementation is defaulted.

	
void ping_plasma()

	
See also

PlasmaClient::ping

	
void set_plasma_get_timeout(std::int64_t timeout)

	
See also

PlasmaClient::set_get_timeout

	
void set_plasma_connect_retries(int connect_retries)

	
See also

PlasmaClient::set_connect_retries

Public Static Functions

	
static casacore::DataManager *makeObject(const casacore::String &aDataManType, const casacore::Record &spec)

	Factory function invoked by casacore to create an instance of PlasmaStMan from a given DataManager specification.
See also

PlasmaStMan::impl::dataManagerSpec

	Parameters

	
	aDataManType – The name of the data manager.

	spec – The specification of the data manager.

	Returns

	A new PlasmaStMan object.

	
class impl

	The Plasma-based storage manager implementation

This class fully implements the plasma-based storage manager, while PlasmaStMan only exposes this implementation, while hiding its dependencies.

Public Functions

	
impl(std::string plasma_socket = "", std::map<std::string, ObjectID> tensor_object_ids = {}, std::map<std::string, ObjectID> table_object_ids = {})

	
See also

PlasmaStMan::PlasmaStMan

	
~impl()

	Destructor declaration because of incomplete PlasmaStManColumn type usage in one of our members; otherwise its implementation is defaulted.

	
void ping_plasma()

	
See also

PlasmaStMan::ping_plasma

	
void set_plasma_get_timeout(std::int64_t timeout)

	
See also

PlasmaStMan::set_plasma_get_timeout

	
void set_plasma_connect_retries(int connect_retries)

	
See also

PlasmaStMan::set_plasma_connect_retries

	
DataManager *clone() const

	
See also

PlasmaStMan::clone

	
String dataManagerType() const

	
See also

PlasmaStMan::dataManagerType

	
String dataManagerName() const

	
See also

PlasmaStMan::dataManagerName

	
void create64(rownr_t aNrRows)

	
See also

PlasmaStMan::create64

	
rownr_t open64(rownr_t aRowNr, AipsIO &ios)

	
See also

PlasmaStMan::open64

	
rownr_t resync64(rownr_t aRowNr)

	
See also

PlasmaStMan::resync64

	
Bool flush(AipsIO&, Bool doFsync)

	
See also

PlasmaStMan::flush

	
DataManagerColumn *makeScalarColumn(const String &aName, int aDataType, const String &aDataTypeID)

	
See also

PlasmaStMan::makeScalarColumn

	
DataManagerColumn *makeDirArrColumn(const String &aName, int aDataType, const String &aDataTypeID)

	
See also

PlasmaStMan::makeDirArrColumn

	
DataManagerColumn *makeIndArrColumn(const String &aName, int aDataType, const String &aDataTypeID)

	
See also

PlasmaStMan::makeIndArrColumn

	
void deleteManager()

	
See also

PlasmaStMan::deleteManager

	
void addRow64(rownr_t aNrRows)

	
See also

PlasmaStMan::addRow64

	
Record dataManagerSpec() const

	
See also

PlasmaStMan::dataManagerSpec

	
Record getProperties() const

	
See also

PlasmaStMan::getProperties

	
void setProperties(const Record &props)

	
See also

PlasmaStMan::setProperties

	
inline rownr_t nrows() const

	Return the number of rows used by all columns managed by this storage manager

	Returns

	The number of rows used by all columns managed by this storage manager

Public Static Functions

	
static DataManager *makeObject(const String &aDataManType, const Record &spec)

	
See also

PlasmaStMan::makeObject

	
class PlasmaStManColumn : public StManColumnBase

	A single column of the Plasma Storage Manager

A PlasmaStManColumn manages a single column on a casacore Table, which will be backed up by an Arrow object stored in Plasma. The actual handling of the underlying Arrow object is done via an ArrowReader instace, which hides the differences between the different types of Arrow objects that can hold data. At the moment the only supported reader is TensorReader (and thus this class still silently assumes that), but more will come. When the Tensor is retrieved from Plasma this class will create the corresponding TensorReader instance, which will ensure the data types are compatible. Also, upon data access (again, through the reader), the tensor’s shape is compared against the column’s cell shape to ensure the tensor and the column define the same dimensionality.

While casacore is column-major, Arrow is by default row-major. On the other hand, the dimensions that this column receives via setShapeColumn are those of individual cells, while Arrow Tensors will contain the full column data. Thus:

	The first dimension of the Tensor should always be the number of rows of the column

	For the rest of the dimensions, they should match the column cell’s shape in reverse order.

In principle support for non-row-major Tensors should be possible to add, but that is left as a future improvement.

Public Functions

	
PlasmaStManColumn(const std::string &name, PlasmaClient &client, PlasmaStMan::impl &storage_manager, const ArrowObjectInfo &object_info, int dataType)

	Create a new PlasmaStManColumn with the given name and data type. Upon construction it connects to Plasma and retrieves the underlying Arrow object, if known at this stage; otherwise a call to initialize_reader needs to be issued later before attempting to read anything.

	Parameters

	
	name – The name of this column.

	client – The Plasma client object used to read Arrow objects off Plasma.

	storage_manager – A reference to the owning storage manager, used to retrieve the number of rows after table creation.

	object_info – Structure containing the Object ID and type of Arrow object to read from Plasma. If the type is ArrowObjectType::UNKNOWN then no reading occurs.

	dataType – The data type of this column.

	
void initialize_reader(const ArrowObjectInfo &object_info)

	Initializes the underlying reader object with the provided information.

	Parameters

	object_info – Structure containing the Object ID and type of Arrow object to read from Plasma. If the type is ArrowObjectType::UNKNOWN then no initialization occurs.

	
bool reader_initialized() const

	
	Returns

	Whether the underlying reader is initialized or not.

Plasma access

	
class PlasmaClient

	A class encapsulating access to a Plasma Store.

This class encapsulates access to a Plasma Store. Although it’s a very thin wrapper around ::plasma::PlasmaClient, it adds configuration capabilities around certain aspects, like timeouts, the socket to connect to, retries and others.

Public Functions

	
PlasmaClient(std::string socket)

	Create a new PlasmaClient that will connect to the given socket.

	Parameters

	socket – The Plasma socket to connect to.

	
void ping()

	Ensure communication between the client and the server works.

	
inline void set_get_timeout(std::int64_t timeout)

	Set the timeout for the Plasma Get operation, in milliseconds.

	Parameters

	timeout – The timeout for the Plasma Get operation, in milliseconds.

	
inline std::int64_t get_timeout() const

	
	Returns

	The timeout for the Plasma Get operation, in milliseconds.

	
inline void set_connect_retries(int connect_retries)

	Set the number of attempts to connect to the Plasma socket before failing.

	Parameters

	connect_retries – the number of attempts to connect to the Plasma socket before failing.

	
inline int connect_retries() const

	
	Returns

	The number of attempts to connect to the Plasma socket before failing.

	
::plasma::ObjectBuffer get(const ObjectID &object_id)

	Read an object from the Plasma store. A plasma_error exception is thrown if no such object is found within the timeout.

	Parameters

	object_id – The ID of the object to read.

	Returns

	A Plasma Object Buffer pointing to the object in the Plasma Store.

	
inline std::string socket() const

	
	Returns

	The socket where this Plasma client connects to.

Data reading

Internally,
data reading is organised in a hierarchy of the Reader classes,
each taking care of reading different Arrow objects.

	
class ArrowReader

	Base class for Arrow data readers used by the PlasmaStManColumn class.

Arrow offers different storage types, like Tensors and Tables. This base class offers a common interface for accessing data from these different storage types.

Subclassed by ska::plasma::TableReader, ska::plasma::TensorReader

Public Functions

	
inline ArrowReader(const std::string &column_name, casacore::DataType data_type)

	Constructs a reader for the given data type.

	Parameters

	
	column_name – The casacore column backed by this reader.

	data_type – The casacore data type of the column backed by this reader.

	
virtual ~ArrowReader() = default

	Virtual destructor required by virtual base class.

	
inline void check_conformance(const Shape &column_shape)

	Checks that the data type and the shape of the underlying Arrow object match those of the casacore column this reader backs up. The column data type is known at construction time, and the column shape is given here.

	Parameters

	column_shape – The shape of the casacore column this reader backs up.

	
virtual void read_scalar(rownr_t rownr, void *dataPtr) = 0

	Read a single scalar value from the underlying Arrow object. The scalar value is that corresponding to the cell in row rownr.

	Parameters

	
	rownr – The (casacore) row number of the cell for which the scalar is being read.

	dataPtr – The address where the scalar should be written to.

	
virtual void read_array(ArrayBase &array, std::size_t offset) = 0

	Read an array from the underlying Arrow object starting at the given offset. The array’s shape determines how much data is effectively read, and might or might not be able to be created with zero-copy.

	Parameters

	
	array – The array where the data should be read into.

	offset – The offset in the underlying Arrow object at which reading will start.

	
class TensorReader : public ska::plasma::ArrowReader

	An ArrowReader that reads data off an Arrow Tensor.

TODO: The current implementation contains two private templated methods to handle all data types. This means we need to continuously do a runtime check for the casacore data type to choose the correct template instance. This could be avoided by offering a TensorReaderBase class that handles all common aspects, then a TensorReader class templated on the casacore data type, and finally a factory function that is called once from PlasmaStManColumn to create the correct reader for the given casacore data type.

Public Functions

	
TensorReader(const std::string &column_name, casacore::DataType data_type, arrow::io::InputStream *input_stream)

	Constructs a TensorReader for the given casacore data type and column from an input stream.

	Parameters

	
	column_name – The casacore column backed by this reader.

	data_type – The casacore data type of the column backed by this

	input_stream – The input stream from where the Tensor will be read. This is possibly created from an object read from Plasma.

	
virtual void read_scalar(rownr_t rownr, void *dataPtr) override

	Read a single scalar value from the underlying Arrow object. The scalar value is that corresponding to the cell in row rownr.

	Parameters

	
	rownr – The (casacore) row number of the cell for which the scalar is being read.

	dataPtr – The address where the scalar should be written to.

	
virtual void read_array(ArrayBase &array, std::size_t offset) override

	Read an array from the underlying Arrow object starting at the given offset. The array’s shape determines how much data is effectively read, and might or might not be able to be created with zero-copy.

	Parameters

	
	array – The array where the data should be read into.

	offset – The offset in the underlying Arrow object at which reading will start.

	
class TableReader : public ska::plasma::ArrowReader

	An ArrowReader that reads data off an Arrow Table.

Tables can contain multiple “fields” or “columns”. The column read by this reader is the one with the same name of the casacore Table column backed up by this reader. If no such field/column is found in the Arrow Table then an error is raised. Only Tables written as a single BatchRecord are currently supported.

Public Functions

	
TableReader(const std::string &column_name, casacore::DataType data_type, arrow::io::InputStream *input_stream)

	Constructs a TableReader for the given casacore data type and column from an input stream. The column name in casacore must be the same as the column in the Arrow Table that will be read.

	Parameters

	
	column_name – The casacore column backed by this reader. Should be the same as the column in the Arrow Table.

	data_type – The casacore data type of the column backed by this

	input_stream – The input stream from where the Table will be read. This is possibly created from an object read from Plasma.

	
virtual void read_scalar(rownr_t rownr, void *dataPtr) override

	Read a single scalar value from the underlying Arrow object. The scalar value is that corresponding to the cell in row rownr.

	Parameters

	
	rownr – The (casacore) row number of the cell for which the scalar is being read.

	dataPtr – The address where the scalar should be written to.

	
virtual void read_array(ArrayBase &array, std::size_t offset) override

	Read an array from the underlying Arrow object starting at the given offset. The array’s shape determines how much data is effectively read, and might or might not be able to be created with zero-copy.

	Parameters

	
	array – The array where the data should be read into.

	offset – The offset in the underlying Arrow object at which reading will start.

Misc

	
class ObjectID

	Simple, immutable class containing an Object ID.

This is a simpler version of plasma’s own Object ID class, but without carrying all its dependencies, allowing us to have a specific type to represent Object IDs (other than std::string) without permeating the codebase with plasma dependencies.

Public Functions

	
ObjectID() = default

	Construct an empty ObjectID, it can’t be used for anything.

	
ObjectID(const std::string &object_id)

	Constructs an Object ID for the given string, which must be a valid plasma Object ID.

	Parameters

	object_id – The contents of the Object ID

	
ObjectID(const char *object_id)

	Constructs an Object ID for the given null-terminated C string, which must be a valid plasma Object ID.

	Parameters

	object_id – The contents of the Object ID

	
inline const std::string &string() const

	Returns the underlying string.

	Returns

	The underlying string

	
inline bool valid() const

	Returns whether this is a valid Object ID or not.

	Returns

	true if this Object ID is valid

Index

 S

S

 	
 	ska::plasma::ArrowReader (C++ class)

 	ska::plasma::ArrowReader::ArrowReader (C++ function)

 	ska::plasma::ArrowReader::check_conformance (C++ function)

 	ska::plasma::ArrowReader::read_array (C++ function)

 	ska::plasma::ArrowReader::read_scalar (C++ function)

 	ska::plasma::ArrowReader::~ArrowReader (C++ function)

 	ska::plasma::ObjectID (C++ class)

 	ska::plasma::ObjectID::ObjectID (C++ function), [1], [2]

 	ska::plasma::ObjectID::string (C++ function)

 	ska::plasma::ObjectID::valid (C++ function)

 	ska::plasma::PlasmaClient (C++ class)

 	ska::plasma::PlasmaClient::connect_retries (C++ function)

 	ska::plasma::PlasmaClient::get (C++ function)

 	ska::plasma::PlasmaClient::get_timeout (C++ function)

 	ska::plasma::PlasmaClient::ping (C++ function)

 	ska::plasma::PlasmaClient::PlasmaClient (C++ function)

 	ska::plasma::PlasmaClient::set_connect_retries (C++ function)

 	ska::plasma::PlasmaClient::set_get_timeout (C++ function)

 	ska::plasma::PlasmaClient::socket (C++ function)

 	ska::plasma::PlasmaStMan (C++ class)

 	ska::plasma::PlasmaStMan::impl (C++ class)

 	ska::plasma::PlasmaStMan::impl::addRow64 (C++ function)

 	ska::plasma::PlasmaStMan::impl::clone (C++ function)

 	ska::plasma::PlasmaStMan::impl::create64 (C++ function)

 	ska::plasma::PlasmaStMan::impl::dataManagerName (C++ function)

 	ska::plasma::PlasmaStMan::impl::dataManagerSpec (C++ function)

 	ska::plasma::PlasmaStMan::impl::dataManagerType (C++ function)

 	ska::plasma::PlasmaStMan::impl::deleteManager (C++ function)

 	ska::plasma::PlasmaStMan::impl::flush (C++ function)

 	ska::plasma::PlasmaStMan::impl::getProperties (C++ function)

 	
 	ska::plasma::PlasmaStMan::impl::impl (C++ function)

 	ska::plasma::PlasmaStMan::impl::makeDirArrColumn (C++ function)

 	ska::plasma::PlasmaStMan::impl::makeIndArrColumn (C++ function)

 	ska::plasma::PlasmaStMan::impl::makeObject (C++ function)

 	ska::plasma::PlasmaStMan::impl::makeScalarColumn (C++ function)

 	ska::plasma::PlasmaStMan::impl::nrows (C++ function)

 	ska::plasma::PlasmaStMan::impl::open64 (C++ function)

 	ska::plasma::PlasmaStMan::impl::ping_plasma (C++ function)

 	ska::plasma::PlasmaStMan::impl::resync64 (C++ function)

 	ska::plasma::PlasmaStMan::impl::set_plasma_connect_retries (C++ function)

 	ska::plasma::PlasmaStMan::impl::set_plasma_get_timeout (C++ function)

 	ska::plasma::PlasmaStMan::impl::setProperties (C++ function)

 	ska::plasma::PlasmaStMan::impl::~impl (C++ function)

 	ska::plasma::PlasmaStMan::makeObject (C++ function)

 	ska::plasma::PlasmaStMan::ping_plasma (C++ function)

 	ska::plasma::PlasmaStMan::PlasmaStMan (C++ function)

 	ska::plasma::PlasmaStMan::set_plasma_connect_retries (C++ function)

 	ska::plasma::PlasmaStMan::set_plasma_get_timeout (C++ function)

 	ska::plasma::PlasmaStMan::~PlasmaStMan (C++ function)

 	ska::plasma::PlasmaStManColumn (C++ class)

 	ska::plasma::PlasmaStManColumn::initialize_reader (C++ function)

 	ska::plasma::PlasmaStManColumn::PlasmaStManColumn (C++ function)

 	ska::plasma::PlasmaStManColumn::reader_initialized (C++ function)

 	ska::plasma::TableReader (C++ class)

 	ska::plasma::TableReader::read_array (C++ function)

 	ska::plasma::TableReader::read_scalar (C++ function)

 	ska::plasma::TableReader::TableReader (C++ function)

 	ska::plasma::TensorReader (C++ class)

 	ska::plasma::TensorReader::read_array (C++ function)

 	ska::plasma::TensorReader::read_scalar (C++ function)

 	ska::plasma::TensorReader::TensorReader (C++ function)

 nav.xhtml

 Table of Contents

 		
 ska-sdp-plasmastman

 		
 Installation

 		
 Dependencies

 		
 Compiling

 		
 Testing

 		
 Python quirks

 		
 python-casacore

 		
 pyarrow

 		
 Usage

 		
 Configuration

 		
 Reading

 		
 Writing

 		
 Example

 		
 Changelog

 		
 1.3

 		
 1.2

 		
 1.1

 		
 1.0.1

 		
 1.0

 		
 API

 		
 Casacore classes

 		
 Plasma access

 		
 Data reading

 		
 Misc

_static/plus.png

_static/file.png

_static/minus.png

